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Abstrac:t-A rather general technique-called the "method of pseudotractions"-is presented
for the calculation of the stress and strain fields in a linearly elastic homogeneous solid which
contains any number of defects of arbitrary shape. The method is introduced and illustrated in
terms of the problems of elastic solids containing two or several circular holes and solids con­
taining two or several cracks, including the cases of rows of holes or cracks. It is shown that
the solution of these and similar problems can be obtained to any desired degree of accuracy.
Furthermore, if only estimates are needed, then the method is capable of yielding closed·form
analytic expressions for many interesting cases. e.g. the stress intensity factors at the crack
tips.

I, INTRODUCTION

The nonlinear and history-dependent responses of many solids most often stem from
the presence of microdefects such as inhomogeneities, voids, and cracks, and from the
evolutionary changes of these defects in the course of a given load history. To estimate
the influence of microdefects on the overall material response, many techniques have
been developed; see Mural I} for an account and a comprehensive list of references.
Most commonly used approaches are based on the stress and strain fields in an infinitely
extended, linearly elastic, homogeneous solid containing an isolated microdefect. This
does not account for the interaction between neighboring defects. Another approach
has been to assume a periodic distribution of microdefects, which may tend to over­
estimate the interaction effect. An account of this and references to recent works are
given by Nemat-Nasser et al.[2] and Iwakuma and Nemat-Nasser[3].

The purpose of the present study is to give a rather general technique for the
calculation of the stress and strain fields in a linearly elastic, homogeneous solid which
contains any number of defects of arbitrary shape, provided that we have the solutions
of a set of subsidiary problems, each consisting of only one defect in an infinitely
extended solid. The method presented here is limited to two-dimensional problems,
although, in principle, one may try to develop a similar approach for three-dimensional
cases. For two-dimensional problems, however, Muskhelishvili's[4} complex stress
potentials provide an effective tool in the calculations, whereas different mathematical
techniques must be employed for three-dimensional cases.

To be explicit, we shall introduce our method-which we have called the "method
of pseudotractions"-in terms of several specific examples in Sections 3 and 4; in
Section 2 we list some of the basic equations. In Section 3, we consider a solid con­
taining two circular holes, then generalize the results to the case when there are several
holes, and finally, we examine the case of a row of periodically distributed holes. In
Section 4, we consider a solid with two interacting cracks and then generalize our
results to several interacting cracks. The solution of these and similar problems can
be obtained to any desired degree of accuracy. Furthermore, if only an estimate is
needed, then the method is capable of yielding closed-form analytical expressions for
many interesting cases, e.g. the stress intensity factors at the tips of several arbitrarily
shaped interacting cracks. Recently, this approach has been effectively used by Horii
and Nemat-Nasser[5] to study the micromechanics of the failure mechanisms in brittle
solids under compression, containing microdefects.

2. BASIC EQUATIONS

The boundary-value problems which will be dealt with in this work are most ef­
fectively formulated in terms of the complex stress potentials <l> and 'Ii of Muskhelish-
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vili[4]. With respect to a rectangular Cartesian coordinate system x, y, the normal
stresses <Tx and <Tv, the shear stress T" = Tn. and the displacement components 11., and
11.", are given by

<Tx + C1y = 2(<1>' + <1>'),

C1y - C1x + 2iTxy = 2(z<J>" + '1"),

2G(ux + iuy ) = K<J> - Z<J>' - '1',
(2.1 )

z = x + iy, i = v'=1,

where G is the shear modulus, and K = 3 - 4v for plane strain and K = (3 - v)/{1 +
v) for plane stress, v being Poisson's ratio; the over-bar denotes the complex cof\jugate,
and prime stands for differentiation with respect to the argument. With respect to the
polar cooordinates 0, " the hoop stress C19 and the shear stress 'Tr9 become

(2.2)

Suppose C is a straight crack on the x-axis, with end points c, and C2. Let on C
the following boundary condition be prescribed:

C1y - iTxy = p(x) on C.

Then, the corresponding stress potentials are given by

m'( ) 1 fn X(t)p(t) d P(z)..,z= t+-
21TiX(z) (', t - z X(z) ,

'1"(z) = <I>'(Z) - <I>'(z) - z<l>"(z) ,

(2.3)

(2.4)

where integration is on C, P(z) is a polynomial, and, for solutions with unbounded
stresses at the end points, we have

(2.5)

P(z) in eqn (2.4) characterizes the order of the pole of <1>' (z) at infinity. This polynomial
is fixed in such a manner that the prescribed conditions at infinity are satisfied and the
displacement field is rendered single-valued.

When C is a circular cavity of radius a, subjected to self-equilibrating stresses, C1r

+ iTrtl = p(t), <I>'(z) and '1"(z) are given by

, I f p(t) / '<I> (z) = - -2' -- dt + Au + A I Z-,
1T' C t - z

'1"(z) = (a/z)2[<I>'(z) + -::'<I>-:-'(-:;a2~/Z) - z<l>"(z)] ,
(2.6)

where integration is on C in a counterclockwise manner, and Ao and AI are complex
constants, fixed in such a manner that the prescribed conditions at infinity are satisfied.

3. AN INFINITELY EXTENDED SOLID WITH CIRCULAR HOLES

3.1 A solid with two holes
As a first example, consider an infinitely extended solid containing two circular

holes, as shown in Fig. 1, under farfield uniform stresses. Let Xl, y' and x2 , y2 be two
parallel rectangular Cartesian coordinate systems with origins 01 and 02 at the centers
of holes I and 2, respectively. Denote by,', 0' and r, 02 the associated polar coordinate
systems. Let the distance between O' and 02 be d21

, and the angle measured from the
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Fig. I. An infinitely extended plate with two circular holes.
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xl-direction to the 0' 02-direction be denoted by cl>21. The components in the xiyi. and
riej·coordinates are indicated with the superscript j, j = J, 2. The quantities followed
by superscript :x: denote values at infinity. The surfaces of the holes are stress-free.
We shall refer to this boundary-value problem as the "original problem."

The solution of this problem is obtained by the superposition of the solutions of
a homogeneous problem and two sub-problems, denoted by I and 2; see Fig. 2. In the
homogeneous problem, an infinitely extended body without any holes is subjected to
the applied stresses at infinity. Sub-problems I and 2 each consist of an infinitely
extended body with only one hole with zero stresses at infinity. In sub-problem j, the
boundary conditions along the surface, Ci, of hole j are given by

0{ + cr-;j + a{:'j = 0, -rlrfl + 'Trlf + -r{:J = 0, on Ci, j = 1,2. (3.1)

The quantities crf' , 'T~I, crf2, and ~ will be called "pseudotractions." They are the
unknown functions which must be determined in such a manner that all boundary

..b.
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Fig. 2. Decomposition of an original problem into a homogeneous problem and two sub­
problems.
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conditions of the "original problem" are satisfied. From the equilibrium conditions,
the pseudotractions must satisfy

j:= 1, 2. (3.2)

The Muskhelishvili[4] stress functions for the sub-problem j are given by

j := J. 2.
(3.3)

where Zi := xi + iyi. The requirement that the sum of the solutions ofthe sub-problems
must be equivalent to that of the original problem leads to

with

0":"2 + h~~ := <P1'(ZI) + <p1/(ZI) - e-2iO~lzl~ + 'JI1'(ZI»),

O"~I + h~} := <1>2' (Z2) + <1>2' (Z2) - e- 2iIl1 [z2<1>2"(z2) + '1'2' (Z2)],

Zl := d2Iei4>~1 + a2eitl~, Z2 := dI2ei4>l~ + a1eill ',

d l2 := d 21 , and et> 12 = 'IT + et>21.

(3.4)

(3.5)

The right-hand sides of eqns (3.4) represent the tractions acting on C2 and C 1 in sub­
problems I and 2, respectively. It is seen from eqns (3.t) that eqns (3.4) ensure the
stress-free condition on the surfaces of the holes when the homogeneous problem and
the sub-problems are superimposed.

Equations (3.2), (3.3), and (3.4) form a system of integral equations for the pseu­
dotractions. In general, it is not easy to solve this system of integral equations explicitly.
However, this system can be reduced to a system of algebraic equations in the following
manner.

We expand the tractions along Ci into a Fourier series as

where

n = -x

xi . xi _ px + (PX 'QX) -2;111
O"r' + ITrll - 0 -2 + I -2 e , j:= t, 2.

(3.6)

Po = (0"; + 0";)12, P~2 :: (0"; - 0";)/2, and Q:'2 :: T;:". (3.7)

It follows from eqns (3.2) that

j = 1, 2. (3.8)

Substituting eqns (3.6) into eqns (3.3), we obtain

-2

<I>1'(zi) = - L (Pi" + iQi,,)(zilai)" - (P:' 2 + iQ:'2)(z i lai)-2,

-2

'l'i'(zi) = - L (I - n)(P1" + iQJ,,)(zi lai)"-2 + L (P{, - iQi,,)(z i lai)-n-2 (3.9)
n=O

j:: 1,2.
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We substitute (3.9) into (3.6) to obtain a system of algebraic equations for the Fourier
coefficients, P1, and Q1.,

PJ,', -_ '" (AJk pk 8il< Qk ] Ail< P'" Ail< P'" Bik Q"".iJ III" m + 1'1'" '" + nO 0 + n - 2 - 2 + 1'1 - 2 - 2.
m_-:x:: (3.10)

I'll '" [Cik pk nik Qk I cJkp'" Cik P" nIk Q""~n =.iJ 1'1111 m + s.rl'lm III + no 0 + 1'1-2 -2 + LrI'l-2 -z.
m_-'C;

where

(3.11)

for If :s - 2, m <:: 0,
otherwise.

for If S -2. m :s -2.

for n 2!: 1. m s -2,
for It = O. m S - 2.

for It = 0, ms -2.
for n :s -2, m :s -2,
otherwise,

for n =O. m:s -2.
for n S -2. m :s -2.
otherwise,

IJ"k -m.
2Nf -m.
(m - 1)11:'''-2 2-m + (n + t)lj~n -m

x [I _ n (aJldik>'.] •
n+I11+1

/J"k_ 2111 + 2•

O.

for If :s -2. m :s -2.

for n :s -2. m 2!: O.
otherwise.

Il{f -m. for n 2!: I, m:S -2.
21I{f' -m. for n = O. m :s -2.
(m - 1)/[J~n-Z 2-111 + (n + Olli!" -m

x [t _ n <aJldJk)Z] •
n+m+J

-/lj~"-2 m+2.
0,

{

O.
CJ~~'I = B{.~".

-B~~n.

{

O.
D{~" = -AJ"~,,.

A~k",.

with

As is seen from eqns (3.10-3.12), the coefficients pJ" and Q!. are of the order of
(ald)ln+ !l+ I where aid = O(a' Id2!) .= O(a2Id!2}. Neglecting high order Fourier coef­
ficients, P1" Q{.. If < - N - I. and It > N - I, eqns (3.9) become 8N - 2 equations
for 8N - 2 unknowns, PJ_N_1, ... ,pJ_z• Pi.• .•. , p~-" Q!-N-'. , .. , Q'-2.
Qt ... , Q~- It j = I, 2. Then eqns (3.9) are easily solved, and the solution of the
original problem is obtained by superposition. The stress functions for sub-problems
1 and 2 are given by (3.9). For example, the hoop stress 0{. along the surface of hole
CJ is given by

O"~ = 0"; + O"~ - 2[(0'; - O'~) cos 2W + 2T;y sin 2&'1

+ 2Pi) + 4(P~ cos &' - Q{ sin ti) (3.13)

x

+ 4 ~ [(Pit - pJ_ n ) cos ntY - (Q~ - Qi_ n ) sin ntY].
n-2
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Typical examples are shown in Table 1 for <1>21 = O. These results coincide with
those by Haddon[6]. Within the number of significant figures shown in Table 1, the
accuracy of the solution does not change for N greater than for those indicated.

3.2 A solid with several holes
The problem of an infinitely extended solid containing M holes is solved in a similar

manner. The original problem is decomposed into a homogeneous problem and M sub­
problems where the typical sub-problem j consists of an infinitely extended solid with

Table I. The maximum and minimum stresses in an infinite plate with two circular holes.

(i) a2/a l = I; s = (d - a' - a2 )/a l

11., = I 11,· = I 11, = 11,· = I1n = 0.5

s 11~ al (N) 11~ a' (N) 11~ al (N)

.4 2.6188 95.41 (22) 4.4227 0 (20) 4.4936 342.48 (22)
-.9048 180 - .9244 89.75 -1.5220 25.18
2.6500 94.60 (\3) 3.2641 0 (13) 3.5867 332.01 ( 13)

- .8962 180 -.8857 91.09 - 1.4602 36.03
4 2.8272 91.35 (7) 2.9922 0 (7) 3.1140 317.36 (7)

-.9397 180 -.9202 90.63 - 1.1370 44.53
10 2.9478 90.20 (4) 2.9981 0 (4) 3.0287 315.38 (4)

- .9790 180 -.9744 90.11 -1.0322 45.08

1:

d

(ii) a2/a l = 5

11., = I

s 11~ al 11~ al 11~ a2 l1i a2 (N)

I .8194 106.24 - .8605 0 2.9998 90.02 - 1.0041 0 (30)
4 1.5433 99.65 - .5272 180 2.9899 89.80 -.9965 0 (17)

10 2.3026 92.49 - .7238 106.24 2.9859 89.81 - .9954 0 (9)

11." = I

s I1A al I1A al a~ a2 O'~ 02 (N)

I 6.1180 0 -.6477 84.27 3.6629 169.53 - 1.0210 90.78 (35)
4 3.4796 0 -.4321 91.56 3.0156 0 -1.0038 90.10 (19)

10 3.0691 180 - .6799 90.93 3.0043 0 - .9951 89.93 (8)
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only one hole} with zero stresses at infinity. In this case, eqns (3.10) become

737

M { '"
P{, = ~~I /1/~ x [A:~/l/P~" + B:~"Q~,,] + A:~IPO

.I""~

A i~ px B'~ Q"'}+ ." -::! -::! + II -::! - ::! •

QiII
M { '"
~~I /I/~X [C:~"P~" + D':~"Q~,] + C:~)PO +
i""~

(3.14)

C'~ p'l. Di~ Q"}." -:! -::! + 'II -:2 -::! .

Neglecting high order Fourier coefficients of the pseudotractions, eqns (3.14) are easily
solved for the Fourier coefficients of the pseudotractions. The hoop stresses along the
surfaces of holes are given by eqn (3.12). Typical results for three equal holes in a row
are shown in Table 2. Results coincide with those by Green[7].

Next, we consider an infinite row of equally spaced circular holes of equal radius
a. In this case, the pseudotractions are the same for all holes, Le., p.:, = Pn and Q{,
= QII for all}, and <l>i~ = 0 for} > k and <I>.i~ = 'IT for} < k. Then, eqns (3.14) become

[ X] [7. ]., o~ 'L ., o~ X- L A :!"o Po + ... LA:!" -:! P -:!.
~=I ~=I

(3.15)

where A~b, and D~b, are given by (3.11) with dO~ = kd and

I~~ = _ (211 + 2m - I)! (ald)2(II+/I/)(llk):!lll+/I/)
_,,2/1/ (211) !(211 - 1)! . (3.16)

Notice that the summation over k produces terms like L (Ilk):!P which can be easily
summed. Then, neglecting high order Fourier coefficients P,,, Q", II < -2N, and n >

Table 2. The hoop stresses in an infinite plate with three equal
circular holes in a row.

II (dcg) (Ttl. (r~ II (deg) (T~

0 2.9960 3.0090 100 - .8074
10 2.8836 2.8962 110 -.4734
20 2.5581 2.5697 no .0470
30 2.0541 2.0650 130 .6902
40 1.4277 1.4389 140 1.3775
50 .7517 .7652 150 2.0249
60 .1075 .1260 160 2.5535
70 - .4258 - .3990 170 2.8988
80 - .7813 - .7434 180 3.0188
90 -.9143 - .8633

a
cr=o.15



738 H. HOIW AND S. NFMAT-N~ssu,

2N - 2, cqns (3.14) become 2N equations for P ~:\. /) ~('\ I) ••••• Po.....
P~(N-I) and 2N - I equations for Q~s . .... Q_~. Q> ... . Q~(" II. Taking N =

I and 2, we obtain the first and second order approximate solutions. For N = I. we
have

(To (l( 1 + ~1T~(alcl)~ - l\n4(alcl)4)(lr; + IT;) - ~n~((/lcI)~((T; - IT;)I

2[ - :\1T~(ald)~((T';- + (T~-) + u; - u~-l cos 2H}/11 + ~n~(ald)~

1~:1T·I(alcl)'11 - 4T;, sin 20/[1 - ~n~(alcl)~ + ~\n.((alcl)"J. (3.17)

Results are shown in Table 3. With increasing N, the solutions converge to those by
Howland[8]. The approximate solutions show relatively good accuracy.

Table 3. The maximum and minimum stresses in an infinite plate with an infinite row of equal circular
holes.

(i) (1, = I. a, = '1'", = 0

(Tl+ Approximate

N= N = ~

2a/d max min (N) max min max min

.1 2.9363 -.9676 (2) 2.9358 - .9679 2.9363 - .9676

.2 2.7676 - .8759 (3) 2.7608 - .K806 2.7678 -.K760

.3 2.5466 - .7382 (4) 2.517 - .759 2.5480 - .7393

.4 2.3261 - .5699 (5) ~.~49 - .6~7 ~.:m - .575

.5 2.1392 - .3866 (5) 1.99 - .50 ~.157 - .401

.6 1.9952 - .2085 (5) 1.76 - .39 ~.031 - .~37

.7 1.8867 - .0681 (8) 1.55 - .30 1.943 - .\01

.8 1.8018 - .0029 (8) 1.38 - .~4 1.86K - .007

t cry

(ii)a, I,u, = '1'", = 0

au Approximate

N= N = ~

2a/d max min (N) max min max min

.1 3.0004 -.9682 (2) 3.0006 -.9679 3.0004 - .9682

.2 3.0063 - .8853 (3) 3.0086 - .8806 3.0063 - .8854

.3 3.0308 -.7801 (3) 3.04\ - .759 3.0315 -.7812

.4 3.0961 -.6828 (5) 3.120 - .627 3.0995 -.6879

.5 3.2411 - .6124 (5) 3.278 - .501 3.250 -.628

.6 3.5463 - .5739 (6) 3.561 - .39\ 3.558 -.608

.7 4.2038 - .5605 (8) 4.06 - .30 4.18~ - .6\9

.8 5.7553 - .5617 (9) 5.00 - .24 5.5~6 - .634
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4. AN INFINITELY EXTENDED SOLID WITH CRACKS

In this section. we apply the method of pseudotractions to the problem of an
infinitely extended solid containing cracks. The procedure is the same as in the pre­
ceding section. First, we consider an infinite solid with two cracks, and then extend
our results to many-crack problems.

4.1 A solid with two cracks
Xl yl- and x2y2-coordinate systems are employed with origins 01 and 02 at centers

of cracks 1and 2of lengths 2c l and 2('2, respectively; see Fig. 3. The yl- and y2-directions
are set to be normal to the crack surfaces C I and C2, respectively. The angle measured
from the xl-direction to the x2-direction is denoted by e21 . Let the distance between
0 1 and 02 be d 21 , and the angle measured from the xl-direction to the 0102-direction be
denoted by <1>21. The components in the xJyJ-coordinates are indicated with the super­
script j, j = I, 2. The quantities followed by superscript :x: denote values at infinity.
The original problem is decomposed into a homogeneous problem and sub-problems
I and 2: see Fig. 4. In the homogeneous problem, an infinite solid without any cracks

Fig. 3. An infinitely extended plate with two cracks.

/

T
II

T

~+
-C:(CT;-'+oj')

-(liy'+Tm

+

-(cr;t+CTyPZ)

-(T.';'-+Tf:)7'

Fig. 4. Decomposition of an original problem into a homogeneous problem and two sub­
problems.
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is subjected to applied stresses at infinity. In sub-problem}, an infinitely extended solid
under zero stresses at infinity has only one crack}, on which the boundary condition~

are

ai,. + a~i + a~'i = 0, Tin + T:;-: + T~': = 0, on C'. } = J. 2. (4.1)

The quantities a~:1 ,<,I, a{.'2 , and T~? are the "pseudotractions." They are the unknown
functions which must be determined in such a manner that all boundary conditions of
the original problem are satisfied. In sub-problem}, the stress functions are given, as
in Muskhelishvili[4J, by

I ._ _J'" ((2 - C
P

)1/2<J>i'(Z.i) = - --",---...".c-:-::::.
27Ti(zi~ - C,')I/. -,' t - ~J

X I(T~' + a~~i - i(T~: + <m dt. (4.2)

where z.i = x.i + iy.i. and primes denote derivatives with respect to the corresponding
argument. The requirement that the sum of the homogeneous problem and the sub­
problems must be equivalent to the original problem, i.e. the "consistency require­
ment," leads to

with

ar2 - iT_~,2 = <J>I'(ZI) +~ + ('-i21l~I[ZI<J>I"L::I) + 'l'1'(~I)],

ar l - iT_~,1 = <J>2'(Z2) + <J>2'(Z2) + e-i2HI~[z2<J>2"c::2) + 'l'2'(Z2)).
(4.3)

(4.4)

The right-hand sides of eqns (4.3) represent the tractions acting on C2 and C I in sub­
problems I and 2, respectively. It is seen from eqns (4.1) that eqns (4.3) ensure the
stress-free condition on the surfaces of the cracks when the homogeneous problem and
the sub-problems are superimposed. Equations (4.3) form a system of integral equations
for the pseudotractions, ar', -G,!, and ar2

, T~?, which are functions of x I and x2
• re-.. ..

spectively. In general, it is not easy to solve the system of integral equations (4.3)
explicitly. Here again, this system of integral equations can be reduced to a system of
algebraic equations in the manner discussed before.

To this end, we expand the pseudotractions into a Taylor series as

a~.i - i~J = L (P{, - iQ{)(x.i/c.i)n,
,,=()

Substituting eqns (4.5) into (4.2), we obtain

} = 1,2. (4.5)

<I>./'(z.i) = i (P~m - iQ~m) [i fmk(Ci /z.i)2k] + L (P~m-I
m=O 1..=1 m=1
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(2k)!
f",~ = gIll 22k (111 + k)k!(k _ I)! ' gIll

{

(2m - I)!
= 22

/1/ m !(m - I)!

1/2

m>O

m = 0
(4.7)

Then the consistency condition (4.3) is reduced to a system of algebraic equations.

pi = " [A i~ p~ + Bi~ Q~] + A i~ xk + Bi~ x~
II ~ ',,,,, "' "1111'" '"oCTy '/lo'T'xy ,

II'=()

Q{ = L [C~~"P;" + D-:~"Q~,] + C:~,a.~~ + D:~T.~,~,
"'=()

where

j,k=1,2,j¥k,

(4.8)

Ai~ = (} «(.j/di~)" ~ ~ «('~/dik)2Iai~
,,211' (")111 L.J + '12/ ..

1= 1 m 1

I< . .~ ~ hIlI 21 + n I< .1< ~ 1 .~
A~'·2/1/-1 = g/l/(C'/d')" ~ -+--2--(C·/d')~I+a·~ 21+1,

/=1111 1 1

with

(4.9)

Cik ­nl -

a{~ = (n + 2) cos[t<l,JI< + 1I(<I>i~ - eik )] - (t + n) COS[/<I>ik + (n + 2)(<I>i l< - eJ~)]

+ 1 COS[(I - 2)<I>ik + (n + 2)(<I>ik - ei~)],

b·:~ = - (11 + 2) sin[/<I>i~ + n(<I>i~ - ei~)] + (t + n) sin[/<I>il< + (11 + 2)(<I>i~ - eik )]

- (t - 2) sin[(t - 2)<I>i l< + (11 + 2)(<I>ik - eJI<)] ,

- n sin[t<l>Jk + n(<I>Jk - eil<)] + (1 + n) sin[I<1>ik + (n + 2)(<I>i l< - aJI<)] (4.10)

- 1 sin[(t - 2)<I>i l< + (11 + 2)( <l>il< - aJI<)] ,

- n COS[/<I>J~ + n(<I>Jk - eik )] + (t + II) COS[I<1>i~ + (n + 2)(<I>i~ - eA)]

/1", =

- (t - 2) cos[(t - 2)<I>i~ + (11 + 2)(<I>i~ - ei~)],

(n + 21 - 1)!
(_1)" 221 -'n![(t - I)!f'

The expressions for B:~, C:~, and D:~ in eqns (4.8) are obtained from the expression
for A:~ given by (4.9), if we replace in the right-hand side of (4.9), a by b, c, and d,
respectively. As is seen from eqns (4.8-4.10), p.:, and Q~ are of the order of (c/d) II + 2,

where Ok/d) = Ok l /d21 ) = O(c2/d I2
). Neglecting terms of orders higher than (c/d)N + I ,

we observe that eqns (4.8) are 4N linear algebraic equations for Pt . ... , p~- I.

Qt. ... , Q~_I' j = 1,2. These equations are then easily solved. The stress functions
for sub-problems 1 and 2 are given by eqo (4.6), and the solution of the original problem
is obtained by superposing those of the homogeneous problem and sub-problems 1 and
2. The stress intensity factors at the tips of the cracks are given by

K·~,,~ "" = y:;;;J [ a~i + pi, + i· . (2k)! ]
~=I (P~k ± P~k-'> 22k(k!)2 ,

(4.11)

v'1TCi [T~{
x

. (2k)! ]
K·~/,,~ ",., = + Qi) + L (Q~~ ± Q~I<-'> 2u (k!)2

~=I



742 H. HORII AND S. NEMAT·NASSER

As a typical example, we consider two collinear cracks with equal length, 2(',
separated by distance d. In this case. ('I == ('~ == c. d~ 1 == d, {j~ I == e11 == 0, <!>~ 1 == O.
<!>I~ == 'IT, P~t == P~t == PZt , P~t-I == -P~t-I == P~t-I, Q~t == Q~r == Q~r, and Q~t-I
== - Q~t- I == QZt-l. Hence eqns (4.8) become

( -I)"P" 22 A7,)"PII/ + A7,hcr;,
,,,=0 (4.12)

(- 1)"Q" == 22 A~)"Qm + A~h,.;\,
",=0

where A;;)" are given by eqns (4.9) with a;;J" == 2. The stress intensity factors at the
two tips of the crack are given in Table 4. The results converge to the exact solution
of Erdogan[9] , as the number of terms, N, is increased. Within the number of significant
figures shown in Table 4, the accuracy of the solution does not change for N greater
than for those indicated.

4.2 A solid with several cracks
The problem of an infinitely extended solid containing M cracks is solved in a

similar manner. The original problem is decomposed into a homogeneous problem and
M sub-problems where the typical sub-problemj consists of an infinitely extended solid
with only one crack j with zero stresses at infinity. In this case, eqns (4.8) become

P~, == ~ {i [A~~"P;II + B{~"Q;,,] + A~~)a.;~ + B{~)"~\~} ,
~= I m=()

i"~

Qj

"
M { x22 22 [C~~IIP;11
~= I m=()
j .. k

(4.13)

j == I, ... , M.

Table 4. The stress intensity factor for two equal collinear
cracks.

2c1d inside outside (N)

0.1 1.0013 1.00 12 (2)
0.2 1.0057 1.0046 (4)

0.3 1.01311 1.0102 (5)
0.4 1.0272 1.0179 (7)

0.5 1.0480 1.0280 (9)
0.6 1.0804 1.0409 (12)
0.7 1.1333 1.0579 (21)
0.8 1.2289 1.081 I (28)

t O"'y

r d

l.- 2C-l ~2C...J
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For an infinitely extended solid containing an infinite row of collinear and parallel
cracks of equal size 2c and equal spacing d, the pseudotractions are the same for all
cracks. Then we have p.;, = PII and ~, = QII for allj. Note that ci = c, eil.: = 0, and
for collinear cracks. <j>il.: = 0 for j > k and <j>il.: = 71" for j < k; and for parallel cracks.
<j>il.: = 71"/2 for j > k and <j>il.: = - 71"/2 for j < k. Then eqns (4.13) become

P~II = i [2 i A~~~IIIJ P~III + [2 i A~~oJ a.~ .
"' 0 I.: -I 1.:-1 (4.14)

Q~II = i [2 i D~~~IIIJ Q~III + [2 i D~~,oJ 7.~\.. P~II+ I = Q~II+ I = O.
11I=0 1.:= I I.: = I

where A's and D's are given by (4.26) with dill.: = kd and

for collinear cracks. and

a~~~1II 2(2/1 + 2m + 1)( _1)11+11I. (4.15)

for parallel cracks.

Note that summation over k in eqns (4.14) produces terms like L (1/k)~p. Neglecting
terms of orders higher than (c/d)2N. eqns (4.14) become two sets of N equations for
Po, P2 • •••• P2(N-lh and Qo, Q2 • ••• , Q2IN-I). Solving eqns (4.14), we obtain the
stress intensity factors at the tips of the cracks by eqns (4.11). Taking N = I and 2.
we have the following first-order and second-order approximate solutions. for collinear
cracks:

{~;J = V1TC/[ I - :~ (~rJ {~g.} , (N = I),

{ K' } [71"4 (C)4J/[ 71"2 (C)2 71"4 (C)4] {a~}
K /I v:rrz. I + 60 d I - (; d - 120 d 7~\.'

and for parallel cracks:

(4.16)

(N = 2),

K, = y!;Ca~/[ I + ~~ (~rJ .
K" == y!;C7;'/[ I - :2 (~rJ . (N = I),

K, = y!;Ca: [I + 7~ (~r]/[I+ ~2 (~r -7~ (~rJ '
K" = y!;C7~~\. [1 _:~ (~)4J/[I_:2 (~) ~ + ;~ (~)4] , (N = 2).

(4.17)

Typical results are shown in Table 5. The solution converges with increasing number
of terms, N. For an infinite row of collinear cracks, the solution converges to the exact
solution of WestergaardlIO). For an infinite row of parallel cracks, results compare
well with Fig. 2.29 (p. 123) of lsidalll). Simple approximate solutions show relatively
good accuracy.

5. DISCUSSION

The method of pseudotractions illustrated above is applicable to various kinds of in­
homogeneities other than cracks and holes. By this method. problems of an infinitely
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Table 5. The stress intensity factor for an infinite row of collinear and
parallel cracks.

(i) An inlinile row of collinear cracks.

N= N=22c/d (N)

0.1 1.0041 (I)
0.2 1.0170 (2)
0.3 1.0398 (3)

0.4 1.0753 (3)

0.5 1.1284 (5)
0.6 1.2085 (8)
0.7 1.3360 (10)
0.8 1.5650 (17)

t ay

(ii) An infinite row of parallel cracks.

1.0041
1.0167
\.0384
\.0704
1.115
1.17
1.25
1.36

1.0041
1.0170
1.0397
1.0747
\.1256
\.1985
1.303
1.45

t
d
t

'xy

t

K/a, V";;: Approximate

N= N=22c/d (N)

0.1 .9879 (2)

0.2 .9541 (2)

0.3 .9049 (4)
0.4 .8479 (4)
0.5 .7896 (6)
0.6 .7344 (8)
0.7 .6845 ( II)
0.8 .6407 (19)

.9878

.9530

.9001

.835

.764

.692

.623

.56

.9879

.9541

.9053

.8502

.797

.752

.721

.708

KIlI-r,,~ Approximate

2c/d (N) N= N=2

0.1 \.0041 (1) \.0041 \.0041
0.2 \.0160 (2) \.0167 \.0160
0.3 \.0349 (3) \.0384 \.0345
0.4 1.0593 (4) 1.070 1.0574
0.5 \.0881 (7) 1.115 \.0811
0.6 1.1197 (8) \. 17 1.0997
0.7 \.1532 (12) \.25 1.105
0.8 1.1877 (19) 1.36 1.09
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extended solid containing inhomogeneities are reduced to systems of integral equations
for the pseudotractions. In this process, only the solution of an infinitely extended solid
with one inhomogeneity is required. Discretizing the pseudotractions, the correspond­
ing system of integral equations is reduced to a system of algebraic equations. These
equations involve powers of the ratio of the size of inhomogeneities to their spacing.
Neglecting high order terms (when the spacing exceeds the size), we solve the system
of algebraic equations. As illustrated for the examples of cracks and holes, the solution
converges quickly when the inhomogeneities are suitably apart. For the case of identical
inhomogeneities equally spaced in a row, the approximate solution shows relatively
good accuracy with only a few leading terms considered.
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